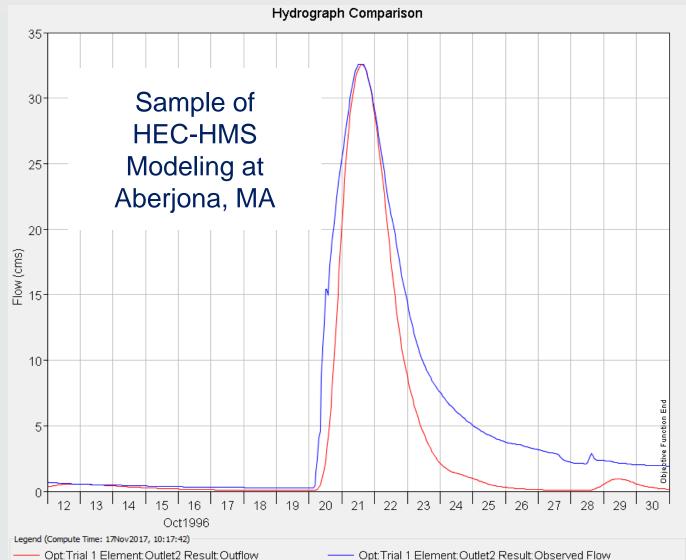

climate and Land Use change Effects on Future Runoff Production & Transfer Mechanisms and Failure Probability of Dams in New England Support for the Future of Dams Project is provided by the National Science Foundation's Research Infrastructure Improvement Award NSF # IIA 1539071.

Dam Failure & Spillway Capacity

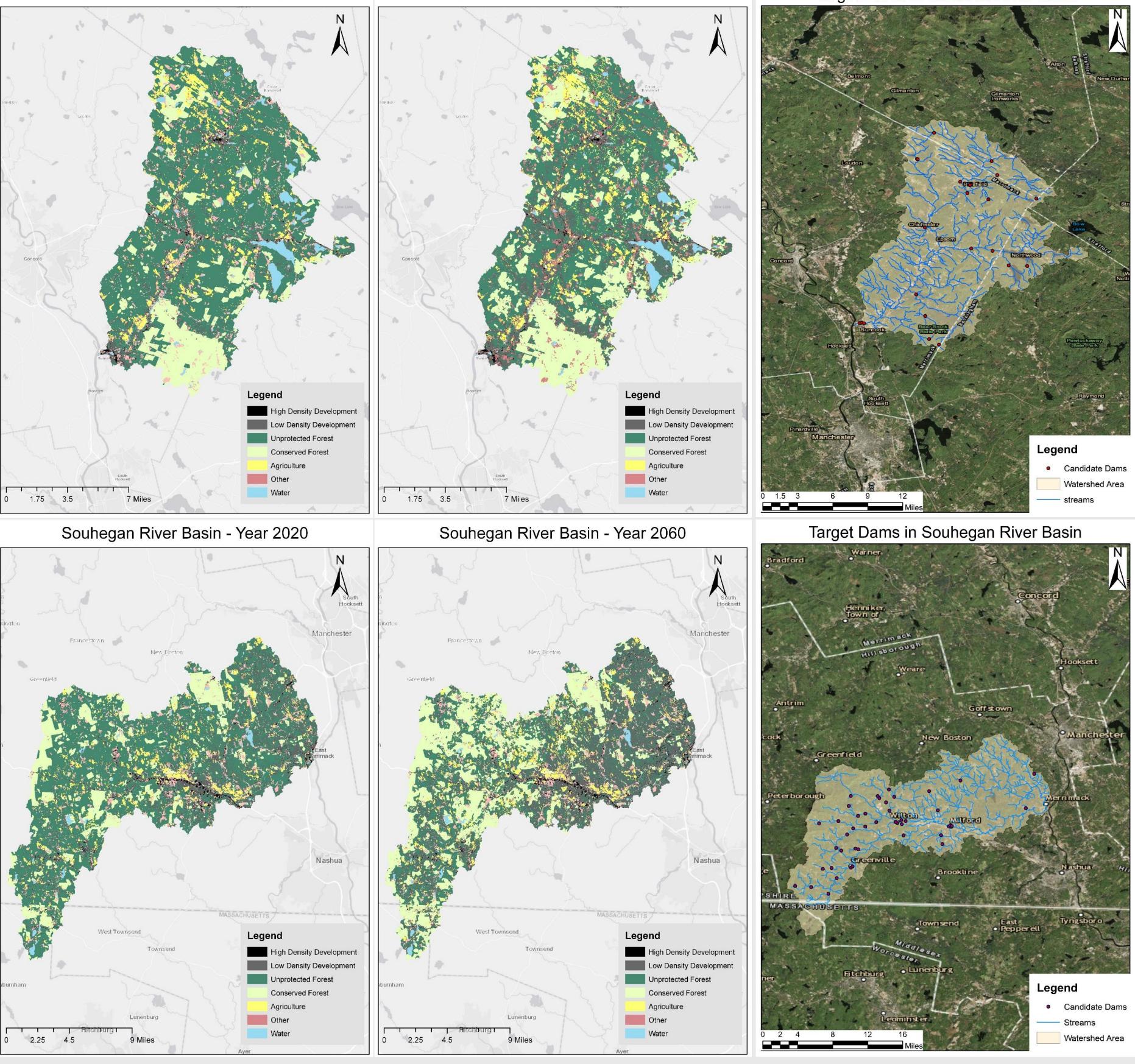
- Most dam failures are caused by overtopping and floods higher than spillway capacity
- Magnitude & frequency of floods exceeding spillway capacity can be used as failure probability indicators

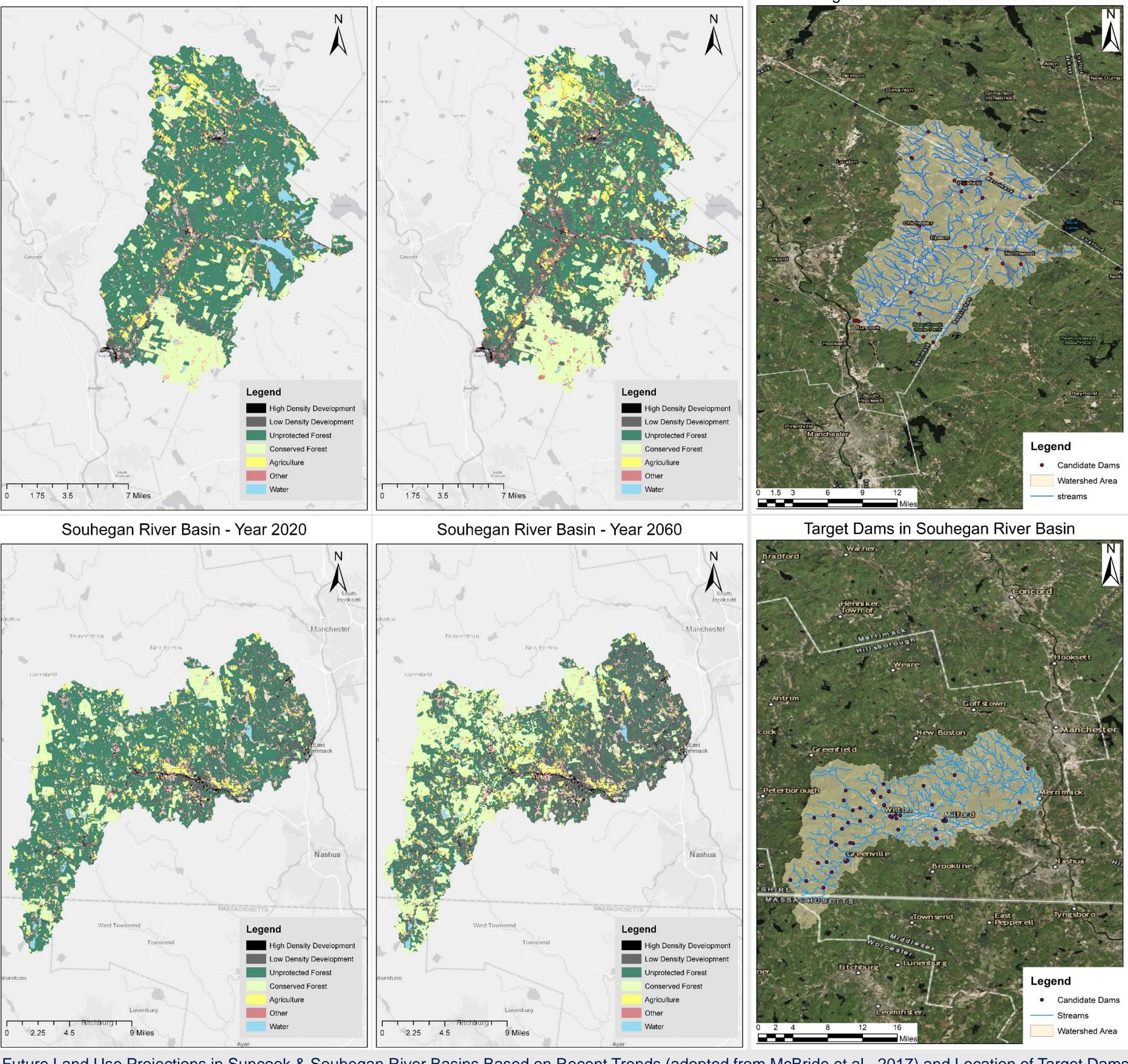
Dam Risk & Spillway Capacity

Risk is product of *probability* and *consequences* of failure


Н	azard Class	Failure Consequences								
	Non-Menace	No anticipated loss of property or life								
	Low	Property los	Property loss							
	Significant	Significant loss of property and possible impacts to occupied structures and roads								
	High	Loss of life								
		Inflow Design Flood*								
	Hazard	NHDES								
	Class	Existing Dams	New Constructions	FERC						
	Non-Menace	-	50-yr	-						
	Low	50-yr	100-yr	100-yr						
	Significant	100-yr	50% PMF	-						
	High	2.5x100-yr	PMF	PMF						

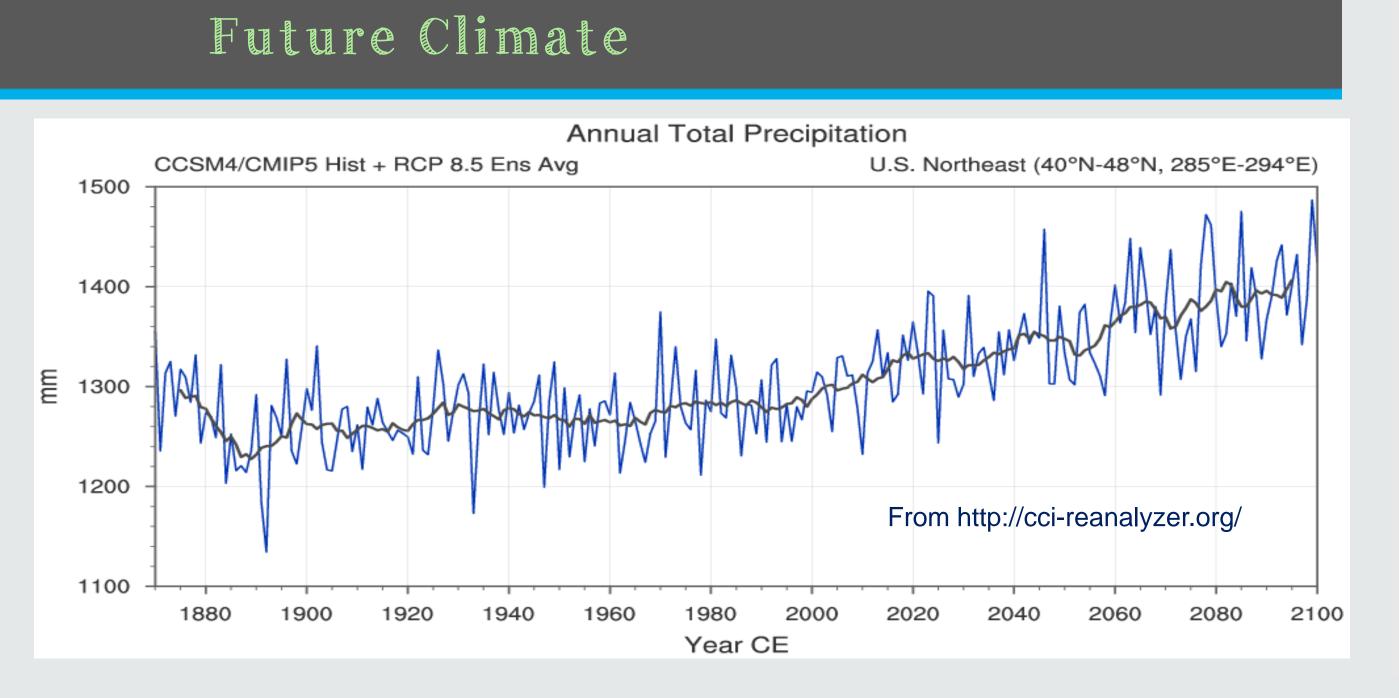
* NHDES existing dams' regulations are based on Env-Wr 303.11 NHDES new dams' regulations are based on Env-Wr 403.04


FERC regulations are based on Federal Emergency Management Agency's guidelines


Hydrologic Modeling

Rainfall-runoff modeling of dam basins in HEC-HMS is conducted to find flood peaks at dam sites using hourly rainfall data

The Souhegan and Suncook River Basins are chosen initially to be studied for their large land use changes Suncook River Basin - Year 2020 Suncook River Basin - Year 2060


Society Project". precipitation and

Iman Hosseini-Shakib Kevin Gardner University of New Hampshire Civil & Environmental Engineering Department

Future Land Use

Future Land Use Projections in Suncook & Souhegan River Basins Based on Recent Trends (adopted from McBride et al., 2017) and Location of Target Dams

> Data of future climate scenario are available at the UNH "Data Discovery Center" website as an outcome of the NH EPSCoR "Ecosystems & Temporal resolution of temperature used for modeling is <u>hourly</u>.

Information of Target Dams in Suncook River Basin

No.	Hazard Class	Name	L (ft)	H (ft)	Spillway Capacity (cfs)	No.	Hazard Class	Name	L (ft)	H (ft)	Spillway Capacity (cfs)
1	L	BEAR HILL POND DAM	310	7	35	11	Н	NORTHWOOD LAKE DAM	169	13	728
2	L	PLEASANT LAKE DAM	225	7	94	12	S	GULCH MOUNTAIN POND DAM	600	14.5	1647
3	L	CLARKS POND DAM	130	8	126	13	Н	PEMBROKE DAM	108	25.6	1848
4	L	HAYES MARSH DAM	240	10	195	14	L	CASS POND DAM	140	10	1961
5	L	DEER MEADOW POND DAM	100	15	350	15	L	ROLLINS POND DAM	192	17	2000
6	Н	BERRY POND DAM	260	18.35	353	16	Н	PITTSFIELD MILL DAM	470	21	4012
7	L	HALL MOUNTAIN MARSH DAM	40	13	494	17	Н	BARNSTEAD PARADE DAM	150	16	7627
8	Н	SANBORN POND GRIST MILL DAM	265	16	554	18	S	WEBSTER MILL DAM	250	18	11010
9	н	SANBORN SAWMILL DAM	156	13	565	19	L	CHINA MILL DAM	275	29	16160
10	L	ADAMS POND DAM	150	10	677						

Information of Target Dams in Souhegan River Basin

No.	Hazard Class	Name	L (ft)	H (ft)	Spillwa Capacity (cfs)	No.	Hazard Class	Name	L (ft)	H (ft)	Spillway Capacity (cfs)
1	L	KAMEN GEO-THERMAL POND DAM	445	24	16	20	L	CURTIS BROOK DAM	100	12	856
2	L	PETERS FARM POND DAM	173	9	16	21	L	SOUHEGAN RIVER SITE 13 DAM	1120	13.5	1197
3	L	HARTSHORN BROOK II DAM	100	8	24	22	L	WATERLOOM POND DAM	214	22.5	1950
4	L	COMPRESSOR POND DAM	210	24	29	23	Н	SOUHEGAN RIVER SITE 33 DAM	510	21	2100
5	L	CURTIS BROOK DAM	60	10	36	24	Н	SOUHEGAN RIVER SITE 28 DAM	590	29	2521
6	L	PRATT POND DAM	150	6.5	36	25	L	OTIS FALLS DAM	150	27	3130
7	Н	WS PACKAGING DAM	360	15	72	26	Н	SOUHEGAN SITE 14 DAM	1510	28.3	4700
8	L	BURTON POND DAM	160	14	75	27	L	WILTON HYDRO DAM	125	17	5420
9	L	FROG POND DAM	190	15	123	28	Н	SOUHEGAN RIVER SITE 10A DAM	1281	59	5500
10	L	LEIGHTON POND DAM	100	10	162	29	Н	SOUHEGAN SITE 8 DAM	570	25	7030
11	L	BATCHELDER POND DAM	170	12	177	30	L	GOLDMAN DAM	180	12	7364
12	L	MEADOW WOOD POND DAM	125	15	210	31	Н	SOUHEGAN RIVER SITE 12A SOUTH	290	37.7	8469
13	L	ERB WILDLIFE POND DAM	150	20	295	32	Н	SOUHEGAN RIVER SITE 12A NORTH DIKE	1185	38.7	8469
14	L	RAILROAD POND DAM	55.75	12	541	33	Н	SOUHEGAN RIVER SITE 35 DAM	1209	30	9135
15	L	FREESTYLE FARM DAM	200	11.5	566	34	L	PINE VALLEY MILL DAM	200	23	11400
16	L	BLOOD BROOK DAM	260	18	575	35	L	MCLANE DAM	200	18.6	11707
17	L	OSGOOD POND DAM	150	9	580	36	Н	SOUHEGAN RIVER SITE 26 DAM	675	79	12544
18	L	FRYES MEASURE MILL DAM	170	15	595	37	Н	SOUHEGAN RIVER SITE 25B DAM	695	74	15800
19	L	HARTSHORN POND DAM	121	14.9	658	38	Н	SOUHEGAN RIVER SITE19 DAM	1250	35.5	16463

Final Intended Outcomes

This research is based on the hypothesis that future failure probability of NE dams will change due to climate and land use change. The hypothesis for this research will be tested by developing the following sets of data:

- \succ Historic flood flow at dam sites,
- Spillway capacity of dams,
- Future high flow regimes,
- regimes.
- Future changes in failure probability of dams

Target Dams

Suitability of spillway design with respect to the past and future high flow