Improving Upland Drainage Representation using LiDAR

Brian Van Dam, Sean Smith, and Andrew Reeve
University of Maine
School of Earth and Climate Sciences
Senator George J. Mitchell Center for Sustainability Solutions

Introduction
Understanding surface runoff patterns is fundamental to evaluating the transport of water and materials through a landscape. These patterns are strongly controlled by the density of upland flow paths, which are often underrepresented in published drainage network data (e.g. National Hydrography Dataset). However, high resolution elevation datasets are increasingly becoming available and present an opportunity to better quantify the extent and patterns of these first order networks.

LiDAR Data
- LiDAR point cloud and two meter resolution elevation model rasters now available for all of coastal Maine extending inland to the head of tide of major rivers.
- Data of this resolution make it possible to remotely map upland drainage networks using direct detection methods that analyze small topographic variations in digital elevation models

Topographic Setting
- Uplands: a watershed’s HI slopes (Fig. 3) and external links – swales and first-order streams (Fig. 4) – essentially all watershed area outside of fluvial channels, floodplains, and ponds
- Upland travel times (pre-channel flow) are an important factor in determining time of concentration for a watershed
- Our field sites:

Calculation of Negative Topographic Openness
- For each point in a regular grid of elevation values, minimum elevation angle θ within user-selected radius R is determined (Fig 8) in each of the eight cardinal and ordinal directions.
- The negative openness angle Ψ for each direction i is
 $$\Psi_i = 90 + \theta_i$$
- The eight directional openness angles are averaged to arrive at a single negative openness angle for the cell.

Python Code
- Inputs are a space-delimited text file of elevations and a user-chosen sweep radius, which is converted from map units (e.g. meters) to number of cells R.
- Calculations are performed on a moving block of $(2R+1) \times (2R+1)$, centered on the cell being calculated for.
- Slope from the center cell is calculated for each cell using relative elevation and distance, then minimum slope is calculated for each direction and converted to an openness angle.
- Output is an ASCII grid of openness values

Output
- A measure of relative prominence of a point in a landscape
- For finding depressed areas such as stream channels, negative topographic openness Ψ is used (Fig 8)
- Because this method does not rely on initiation process relationships to estimate locations of channel heads, it has been used to map channels in terrains that are not purely fluvially shaped, including ancient channels on the surface of Mars in areas that have since been affected by cratering (Ψ)

Discussion
- While it would have been convenient to discover a threshold of 91.5° was appropriate for our watersheds as well, the initial results above were not surprising
- Possible factors behind the differing results include thickness of the soil layer, climate / rainfall differences, and the glacial carving that shaped Maine’s landscape
- Additionally, the effect of the length of the sweep radius must be considered. 100m was used in Maryland; in our watersheds, it is not uncommon for channel heads to fall within that distance of each other
- Still, overall performance of the python openness code is very satisfactory, and the method is able to locate modified conveyances (Fig 13)
- Future work will focus on the use of direct detection-derived drainage networks to investigate changes in upland surface drainage patterns with urbanization

References:

Acknowledgements:
Special acknowledgement to Daniel Jones and Dr. Matt Baker (UMES) for collaboration on the topographic openness python code. Generous assistance has been given on this project by Underne PhD student Brett Gerard and student interns – Ali Bradford, Tyler Sullivan, and Alex Svinicka (Johns Hopkins). Funding through Earth & Climate Sciences Foundation award EPS-0904155 to Maine EPSCoR New England Sustainability Consortium (NESC) – National Science Foundation award EPS-1330697 to Maine EPSCoR.